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What is Maximum Service Temperature?

T°C
1200

Materials

Refractory metals: Mo, W, Ta
Alloys of Nb, Mo, W, Ta
Ceramics: Oxides

Al,04, MgO, etc.

Nitrides, SigN,,

1000 Carbides, SiC

Austenitic stainless steels
Nichromes, nimonics

Nickel based super-alloys
Cobalt based super-alloys

800 Iron based super-alloys

Iron-based super-alloys
Ferritic stainless steels
Austenitic stainless steels
Inconels and nimonics

600

Low-alloy steels
Titanium alloys (up to 450 °C)
Inconels and nimonics

400

Fibre-reinforced polymers
Copper alloys (up to 400 °C)
Nickel, monels and nickel-silvers
PEEK, PEK, PI, PPD, PTFE
and PES (up to 250 °C)

200

Most polymers (max temp: 60 to 150 °C)
Magnesium alloys (up to 150 °C)
Aluminum alloys (up to 150 °C)

0 Monels and steels

Austenitic stainless steels
Aluminum alloys

—200

Copper alloys

—273 Niobium alloys

Applications

Rocket nozzles
Special fumaces
Experimental turbines

Gas turbines

Chemical engineering
Petrochemical reactors
Fumace components
Nuclear construction

Steam turbines
Superheaters
Heat exchangers

Heat exchangers
Steam turbines
Gas turbine compressors

Food processing
Automotive (engine)

Civil construction
Household appliances
Automotive
Aerospace

Rocket casings, pipework, etc.
Liquid O, or N, equipment

Superconduction

TK

1400

1200

1000

800

600

400

200

Melting point (°C)

3500

3000

2500

2000

1500

1000

500

1000

g

Strength, oy (MPa)

0.1

0.01
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Materials: engineering, science, processing and design, 2nd edition, 2010, Michael Ashby, Hugh Shercliff, David Cebon
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Key Phenomena/Parameters of Concernin Extreme Environments

RT/ET Static &

Dynamic _
P Strength, e
: Deformation, '
Synergistic and Fracture
Creep Fatigue, Behavior
Corrosion
Fatigue, TMF,
Other

Thermal
Conductivity,
Thermal
Expansion,
Other Thermo-
Physical

Microstructural Ke Environmentally
Degradation and y Assisted

Thermal .
e Phenomena \Cracklng

- Corrosion,
Ability to _ Pm— Oxidation,
Inspect / Repair Erosion, and

/ Replace S N  Embrittlement

Key

Temperature
Parameters -

Manufacture Stress

(Form / Join /
Machine)
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Deformation Mechanisms

T'Tm
0 0.5 1.
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» Testing and Validation:
o Quasi-static: MMPDS S/A/B Basis Design Allowables
o Dynamic (time dependent): Bona Fide Average +

3/4/5 X Life

Materials: engineering, science, processing and design, 2nd edition, 2010, Michael Ashby, Hugh Shercliff, David Cebon
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» Uniaxial stress conditions have commonly been

employed in studies concerning failure o
engineering materials at high temperatures.

» It has been observed that for uniaxial creep

conditions a fundamental power law exists which
simply relates the time to rupture, t;, and the
applled stress, g, as follows M and y are stress

independent constants for a given material and testing condition

t, =Moo “*

» In high temperature applications, however, the

majority of the components are subject to stress
states varyingin both time and position. Under
such complex loading conditions, the stress used
in this equation must be modified to correctly
predict rupture time.

Copyright © 2019 Boeing. All rights reserved.
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Multiaxial Representative Stress Parameters

Oy =00, +(1-a)o,

¢ Continuum mechanics approach.
e o and o, contribute independently and represent the

driving force for diffusional cavitation and creep
deformation processes, respectively.

e o, is the effective stress and « is a constant.

e Continuum mechanics approach.
o Contributions of different processes to creep rupture,

driven by o3 and o, are considered to be
interdependent.

e visa constant.

e Based on early multiaxial creep
rupture studies.

e Applied under the condition of the
progressive development of a
homogeneous distribution of
cavities at a level microscopically
visible from the onset of testing.

e Based on early multiaxial creep
rupture studies.

o Applied under the condition that

no significant cavitation occurs in
samples other than that observed
in the close vicinity of the rupture
surface.

e Based on a cavity growth model
developed by Rice.

n-1 o Utilized for conditions where
grain boundary cavitation is
constrained by continuum creep
rate of the surroundings.

e n is the creep exponent.

¢ Applicable for situations where

O, =0p =2.240,-0.62(c, +0,) cavitation is coupled with highly

localized deformation processes,
such as grain boundary sliding.

11/22/2019 | Ali Yousefiani |
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Thermal Fatigue and Creep fatigue

» Creepis not the only source of strain in high-temperature applications. Transient
thermal gradients within a component can induce plastic strains; if these thermal
radlen)ts are applied repeatedly, the resulting cyclicstrain can induce failure (thermal
atigue).

» Thermal fatigue has traditionally been treated similar to isothermal low cycle fatigue
(LCF) at the thermal cycle maximum temperature. However, it is possible to analyze
complex thermal cycles and to conduct thermomechanical fatigue (TMF) tests under
controlled conditions.

» Thermomechanical and combined creep-fatigue loads can substantially decrease life
at elevated temperatures as compared with that anticipated in simple creep loading
or isothermal LCF tests.

» These damage mechanisms may act independently or in combination depending on
materials and operating conditions, such as maximum and minimum temperatures,
temperature range, mechanical strain range, strain rate, the phasing of temperature
and strain, dwell time, or environmental factors.

» Different locations behave differently

11/22/2019 8
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Forms of Corrosion

» While corrosion can take many forms, it is most e O 020 L O
generally defined as a chemical or electrochemical ... il
reaction between a material and its environment ==
that produces a deterioration (change) of the 1 Hnia
material and its properties. : B3

» A broad view would separate corrosioninto two
categories: B
o Not influenced by any other process
* Uniform Corrosion
* Localized Corrosion

\

Parabolic weight
gain

Weight gain or loss Am

Time t
* Metallurgically Influenced Corrosion
o Influenced by another process, such as the presence of o, L
stresses or erosion. =
* Mechanically Assisted Degradation )
* Environmentally Induced Cracking
. . Materials: engineering, science, processing and design, 2nd

> Hi gh Temperature Corrosion edition, 2010, Michael Ashby, Hugh Shercliff, David Cebon
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High-Temperature Corrosion

» Potential degradation mechanisms for HT corrosion:
o Oxidation

Carburization and metal dusting

Sulfidation

Hot corrosion

Chloridation

Hydrogeninteractions

Molten metals

Molten salts

Aging reactions, such as sensitization

o Environmental cracking (stress-corrosion cracking and corrosion fatigue)

» Presence of molten salts or metals may induce other mechanisms, such as galvanic
corrosion, crevice corrosion, and pitting corrosion.

» Impingement by solid particles may contribute to erosion-corrosion or accelerate
corrosion in the various gaseous or molten environments.

O O OO O O O O

Copyright © 2019 Boeing. All rights reserved. 11/22/2019 | Ali Yousefiani | 11
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Environmentally Assisted Cracking (EAC)

» Mechanisms of corrosion that induce cracking of materials as a result of
exposure to their environment. This cracking may take the form of relatively
slow, stable crack extension with a predictable growth rate or, as is often the
case, unpredictable catastrophic fracture.

» Environmentally Assisted Cracking (EAC):
o Stress-corrosion cracking (SCC)

o Hydrogen damage (frequently referred to as hydrogen embrittlement - HE)
o Liquid metal induced embrittlement (LMIE)
o Solid metal induced embrittlement (SMIE)

» All of these phenomena generally are dependent on yield strength and applied
stress. As both of these factors increase, resistance to EAC decreases. However,
many differences between the various forms of environmentally induced
cracking are encountered.

Copyright © 2019 Boeing. All rights reserved. 11/22/2019 | Ali Yousefiani | 12
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Design Space
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Simulated Service and Relevant Environment Testing
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Phase I:

e Various candidate materials and welds (both SSH
and PH):

e Austenitic Stainless Steels

* Nickel-lron-Base Superalloys

* Cobalt-Base Superalloys

* Nickel-Base Superalloys
* Smooth C-ring or Bent Beam configuration
® Higher stresses
¢ Higher temperatures

¢ Higher thermal cycles per day

¢ Short exposure (e.g. two weeks)

¢ Detailed metallurgical evaluation
(OM/SEM/EDS/MH)

* Downselect most compatible materials systems
for structure and ID possible cladding/coating

Copyright © 2019 Boeing. All rights reserved.
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Typical Material Assessment Approach — New Environment

Phase Il:

e Downselected material systems:
* Base material
e Welded material
¢ Coated material

e Smooth and notched C-ring or
Bent Beam configuration

e Application stresses

» Application temperatures

e Application thermal cycles

¢ 30 day exposure

e Detailed metallurgical evaluation
(OM/SEM/EDS/MH) + Chemical
Analysis

e Downselect final options
(hopefully more than one)

Phase lll:

* Bent Beam and Static Tensile
and Fracture Mechanics coupon
type configurations

e Application stresses
» Application temperatures
e Application thermal cycles

* 90+ day exposure (Bent Beam)
and shorterterm for other

e Detailed metallurgical evaluation
(OM/SEM/EDS/MH)

e Residual mechanical properties
(on bent beam samples)

e Subcomponent level testing

11/22/2019 | Ali Yousefiani| 15
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Airplane Development vs. Airplane Material Development

________ 1 < 5-7 Years >
v |

) Airplane .
Airplane | \V\ N\~ Study Buld >

Dev

Production
Materials Orders

< ICME, High Throughput

Synthesis, T&E, Etc...
Materials .
Dev —> R&D > Scale-Up

Design Prod.
Allowables Ready

Time (Years) =2

Significant Risk Mitigation is Required to Certify a New Structural Material
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Concluding Remarks

» Materials are vital part of aircraft / spacecraft
performance improvements

» A new material system must earn its way onto the
aircraft:

o Targeted Application
o Breakthrough performance improvements Advanced
o Value and affordability across the life cycle Multifunctional

. L ol . . D -
» Significant improvements must be realized to offset s
development/certification costs

» We need to:

o Implement high throughput synthesis, testing, and
evaluation approaches

o Get smarter/leaner with R&D activity + team up + leverage
resources whenever possible

o Implement Integrated Computational Materials
Engineering as early as possible

o Choose appropriate application with the best business case

o Integrate various technologies and incorporate multiple
functionality

Copyright © 2019 Boeing. All rights reserved.
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